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Abstract 
The aim of this paper is to enlighten  a need to test the two most popular volatility models: the 

GARCH-ARMA model, based on a daily returns and the RV and the ARMA model, based on 30 

min intraday high frequency (HF) data, in terms of non Gaussian Time Series Analysis. The 

ability of the models to perform a digital whitening and to produce independent innovations is 

tested on seven foreign exchange rates (FX) including Jpy/Eur, Usd/Eur, Cad/Usd, Chf/Eur, 

Chf/Usd, Usd/Gbp and Gbp/Eur, taken from Bloomberg. In the first step, stationary ARMA-

GARCH models of different orders were built  and the best model was chosen  by using AIC and 

Box-Pierce test based on the innovations of daily squared returns. In the second step, realized 

daily volatilities (RV), defined as the sum of intraday squared 30 min returns, are used  to 

estimate the RV-ARMA volatility model parameter and to calculate forecasting errors. In the 

third step, the higher order cumulants (HOC) are calculated  for 20 lags for all currencies and 

used to perform the Hinich test. Finally, it was not shown that whitening of squared returns, 

neither by using GARCH-ARMA nor by using RV ARMA model, is efficient. The finding of 

serial dependence in innovations signifies the presence of structure in the data that cannot be 

modeled by ARCH or GARCH or RV volatility models that assume a pure noise input. A further 

improvement is suggested  in the stage of parameter estimation  by using Higher Order Cumulant 

function , prior to the model testing  based on Hinich test. 
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Introduction  
Amid the current financial and banking crisis, there is a long standing discussion about the 

origins of crisis in general and the currency crisis in particular. An important empirical condition 

which bears witnesses of the crisis is the fact that the real FX probability density functions (pdf) 

is leptokurtic with a fat tails. In addition, volatility clustering often characterize market returns, 

which means that periods of a high volatility are followed by periods of a high volatility and 

periods of a low volatility are followed by periods of a low volatility. This implies that the past 

volatility could as a predictor of the volatility in the next period. It was believed  that both 

volatility clustering and fat tails could be explained  by using the well-known Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) or Realized Volatility (RV) model. 
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Indeed, there are many variants of ARCH/GARCH models which are developed to improve 

the out-of-sample volatility forecasting performance. These models have many strong 

proponents who believe that GARCH models are currently the best obtainable forecast 

estimators. There are studies which confirm a very low coefficient of determination produced by 

GARCH models. For instance, Anderson and Bollerslev (2001), Poon & Granger (2003), Carrol 

& Kearney (2009) showed theoretically that R2 for a GARCH(1,1) model tends to 1/ , where  

stands for the kurtosis of the distribution of stock returns. This means that the highest coefficient 

of determination for Gaussian returns achievable by GARCH models is bounded  from above by 

1/3. 

Contrary to the standard setting for economic prediction evaluation, the volatility is not 

directly measurable, but rather intrinsically latent. Accordingly, any ex post evaluation of 

forecast accuracy must account for a fundamental data error problem. The availability of the 

high-frequency intraday data has led a number of recent studies to endorse the use of so-called 

realized volatilities (RV), constructed from the summation of finely sampled high-frequency 

squared returns, as a practical method for improving the ex post volatility measures. Assuming 

that the sampling frequency of the squared returns utilized in the realized volatility computations 

approaches zero, the realized volatility is then believed  to estimate consistently the true (latent) 

integrated volatility. 

Market microstructure noise is produced by  a range of inbuilt frictions built into a trading 

system: bid–ask bounces, discreteness of price changes, differences in trade volume or 

information content of price changes, steady response of prices to a block trade, etc. In fact, 

market structure effect introduces a bias that grows as the sampling frequency increases. This 

motivated the idea of viewing the observed FX price   as noisy measures of the latent true FX 

spot price. These tick-by-tick return processes obviously violate the theoretical semi-martingale 

restrictions implied by  the no-arbitrage assumptions in continuous-time asset pricing models. 

Thus realized volatility, constructed directly from ultra high frequency returns, appears to be 

regularly corrupted with the measurement error (Bai, Russell, and Tiao (2000)). 

Corsi (2009) introduced a simple Heterogeneous Autoregressive model of the Realized 

Volatility (HAR), which directly model and forecast the time series behavior of volatility 

realized over different time horizons. Corsi demonstrated that his model successfully reproduced 

some of the main empirical characteristics of the financial data – fat tails and long memory in the 

volatility – by using tick-by-tick logarithmic middle prices of USD/CHF FX rates in the period 

of 12 years (from December ’89 to July 2001). Hansen &Huang (2011) introduced a Realized 

GARCH model with the aim to include the relation between the observed realized volatility and 

the latent volatility. They demonstrated a substantial improvement in the log-likelihood in the 

case of DJIA index. 

Traditional methods of comparing volatility models insofar have been: Mean Forecast Error 

(MSE) produced by   those models and its many variants; maximum likelihood value and AIC or 

BIC criteria. Most recently the other approach is taken . That is to say, given a set of 

characteristic features or exchange rate stylized facts such as volatility clustering, fat tail 

phenomena, leverage effect, or Taylor effect, one may ask the following question: have popular 

volatility models been parameterized in such a way that they can accommodate and explain the 

most common stylized facts visible in the data? Models for which the answer is positive may be 

viewed  as suitable for practical use. For example, Teräsvirta (1996) investigated the ability of 

the GARCH model to reproduce series with high kurtosis and, at the same time, positive but low 

and slowly decreasing autocorrelations (AC) of squared observations. Bai, Russell & Tiao (2003) 
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also compared GARCH and ARSV models in terms of kurtosis -autocorrelation relationship in 

squared returns. 

Ultimately, non Gaussian Time Series Analysis (NGTSA) is gaining new importance in the 

context of volatility modeling and risk management. Ideally, in terms of NGTSA, a good 

volatility model should have a capacity to perform “digital whitening“ of stock market squared 

returns and therefore to produce independent and identically distributed  innovations (iid), which 

are known as forecasting errors or simply as driving noise (Lim & Hinich (2006).  

The aim of this paper is to test the ability of two best known volatility models, GARCH and 

RV, to produce non correlated and independent innovations. The organization of the paper is as 

follows. The GARCH and the RV models are defined  in Section 2; The Box& Pierce test and 

the Hinich tricorrelation test are introduced  in Section 3.The same section presents the 

introduction to higher order moments and cumulants. The data description and model building 

results are presented   in Section 3. Section 4 presents comparative innovation analysis and 

model testing results. Section 5 contains conclusions and suggestions for further research. 

 

Volatility Models 

The fact that stock market returns are often characterized  by volatility clustering – which means 

that periods of a high volatility are followed  by periods of a high volatility and periods of a low 

volatility are followed by periods of a low volatility – implies that the past volatility could be 

used  as a predictor of the volatility in the next period. Although the autocorrelation of the 

returns is insignificant at all frequencies, the autocorrelations of the squared absolute returns 

persist within a very long time interval demonstrating a long memory in volatility. 

 

The GARCH Model 

Let et denote a discrete time stationary stochastic process. The GARCH (p, q) process is given by 

the following set of equations: 

 

t-1log( ) log( )t tr P P                                                                                                                 (1) 

rt = x(k)g(k) + et                                                              (2) 

et = vt√ht 

et/t-1 ≈ N(0, ht)                                                                          (3) 

 

ht = 0 + ∑ αi
p
1 e2

t-i+∑ βjht−j
q
1      ,                               (4) 

 

where pt represents stock prices; et represents random returns; x(k) is a vector of explanatory 

variables; g (k) is a vector of multiple regression parameters; ht is the conditional volatility; i is 

autoregressive; and j is the moving average parameter as related to the squared stock market 

index residuals. An equivalent ARMA representation of the GARCH (p, q) model (Bollerslev, 

1982, pp. 42-56) is given by: 

 

et
2 = 0 + ∑ (αi

p
1  + i)e

2
t-i + t -∑  β

q
1 jt-j        ,         t = et

2 -ht                           (5) 

 

where ht is known as GARCH variance. 

In this context, the GARCH (p, q) volatility model is simply an Autoregressive Moving 

Average, ARMA (p,q) model in et
2 driven by iid noise t, which is Gaussian random variable. It 
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is worth stressing that the GARCH variance, ht, in time series analysis, appears to be merely an 

estimate of the squared de-trended SM returns et
2. 

The best known ARMA model building methodology is the Box-Jenkins (1976) iterative 

methodology, which includes three steps: model order determination, parameter estimation and 

model testing. This  methodology assumes that each stationary time series can be treated  as an 

output from the AR(p), MA(q) or ARMA (p,q) filter, which has as an input – uncorrelated and 

Gaussian innovations – }.  

The ARMA model has the following form: A(Z) et
2= B(Z)* t, where Z is a backward shift 

operator: : et-1
2=Z-1 et

2 : et-k
2
 =Z-k et

2
, and where A(Z)=p

-p and 

q
-q   are characteristic  functions of orders p and q respectively. The 

roots of the characteristic functions of the ARMA model must be within the unit cycle to 

guarantee stationarity and invertibility of the model. 

 

Realized Volatility Models 

Recently Corsi (2009) introduced an alternative approach to construct an observable proxy for 

the latent volatility by using intraday high frequency data. His work was inspired  by Merton 

(1980) Merton inspired his work, who showed that the integrated volatility of a Brownian motion 

can be approximated  to an arbitrary precision using the sum of intraday squared returns. 

 

IVt=∫ ơ
𝑡

𝑡−1
2(s)ds                                                                                                  (6)        

 

So, in this integrated framework, the Integrated Variance (IV) is considered  to be the 

population measure of actual return variance. Namely, it was proved   that the sum of intraday 

squared returns converges (as the maximal length of returns go to zero) to the integrated 

volatility of the returns, making it possible to construct an error free estimate of the actual 

volatility. This nonparametric volatility estimator is known as realized volatility (RV). 

 

RVt=∑   ∞
1 r2

t,i                                                                                                                                                                   (7) 

                                                                                                                                                  

Taken accurately, this theory suggests that one should sample prices as often as possible. 

This would lead to estimate IVt by RVt from tick-by-tick data. However, as was noted   in 

Merton (1980) “in practice, the choice of an even-shorter observation interval introduces another 

type of error which will swamp the benefit long before the continuous limit is reached”. The 

modern terminology for this phenomenon is known as market microstructure effects. These 

effects cause the observed market price to diverge from the efficient price. All told, market 

structure effect introduces a bias that grows as the sampling frequency increases. This motivated 

the idea of viewing the observed prices, pt, as noisy measures of the latent true price. 

 

Indeed, in practice, empirical data at very small time (RV) make a strongly biased estimator 

in case of small SM return interval. Therefore, a trade-off between measurement error and bias 

must be found. On one hand, statistical theory would compel a very high number of return 

observations to reduce the stochastic error of the measurement. On the other hand, market 

microstructure comes into play, introducing a bias that grows as the sampling frequency 

increases. Given such a trade-off between, a simple way out is to choose, for each financial 

variable, the shortest return interval at which the resulting volatility is still not significantly 

affected by the bias. This approach has been pursued by Andersen et al. (2001), who agree on a 
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return interval of 30 minutes for the most highly liquid exchange rates, leading to only 48 

observations per day.  

Literally, it is believed  that the realised volatility, defined as the sum of intraday, 30 min 

squared returns, provides a more accurate estimate of the latent volatility than the estimate based 

on daily squared returns. 

           

RVt=∑   48
1 r2

t,i                                                                                                                              (8)                 

            

The theoretical and empirical properties of realized volatility are derived  in (Andersen, 

Bollerslev, Diebold and Labys, 2001) for foreign exchange. They found that realised volatility 

distribution is nearly Gaussian.  In this article the ARMA model applied to RV is tested : 

 

RVt = 0 + ∑ αi
p
1  RVt-i + ut -∑  β

q
1 jut-j                                    (9) 

 

Estimated realized volatility is then calculated by   using the formula: ERV =RVt-ut 

 

   

Model Testing Methods 

There are two tests which can be applied  to test the null hypothesis that the ARMA model 

innovation time series represent a white noise. The first is the well known Box& Pierce test 

which can be applied  if innovation series – driving noise is independent and identically 

distributed Gaussian process. In the case of non Gaussian probability density function, the Box-

Pierce test would not show model inadequacy since it is based only on second order statistics, 

which is no longer sufficient for parameter estimation.  

All stationary time series are time reversible (TR). The contrary is not true. Visually, TIR 

demonstrate a tendency of a variable to rise rapidly to local maxima and then to decay slowly. 

This time reversibility amounts to temporal symmetry in the probabilistic structure of the 

process. TR cannot be evaluated   by using the second order cumulants – autocovarianvce 

function. Therefore the Hinich test based on higher order cumulant function is more appropriate 

in non Gaussian case. 

 

Box-Pierce Q Test  

As for diagnostic checking, if obtained model is appropriate and the parameter estimates are 

consistent and efficient for the particular time series, then the model innovations 

uncorrelated random deviates, and their first L sample autocorrelations: 

 

AC(k) =∑ 𝜈 (𝑡)𝜈(𝑡 − 𝑘)/ ∑   (10) 

 

would have a multivariate normal distribution Box-Pierce (1970). They also showed that the 

AC(k), k=0,1,2…L, are uncorrelated with variances which could be approximated by  : 

Var(AC(k)) = n-k/n(n+2) ≈1/n, from which it follows specifically that n(n+2)∑(n-k)-1AC(k)2 

would, for large n, be distributed as χ2 with L degrees of freedom; or as a further approximation: 

 

n∑(AC(k)2 ≈ χL
2                                                            (11) 

 

When applied to the ARMA parameter estimation, degree of freedom must be changed   to  
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L-p-q, where p and q are the orders of the autoregressive and moving average operators. 

 

The Hinich Test 

As proved empirically, in the case of exchange rate and stock market returns, driving noise is not 

independent and (most usually) it is non Gaussian either. Subsequently, the second order 

moment and correlation function do not represent “sufficient statistics”, neither for the ARMA 

parameter estimation, nor for the model testing. In fact, it is well known   that for a non-Gaussian 

process, the higher order moments exist and are different from zero. 

 

 Cumulants   

Eversince  it was realized   that the normal distribution was unsatisfactory for describing 

economic and demographic data, there were attempts to  use of a special type of distribution to 

represent a new system of skewed distributions f(z) by using the quantities of the distribution 

r r+2 2
(r+2)/2 . r are called distribution invariants- r 

are independent of both location and scale and therefore are called a distribution  shape 

coefficients  (Hald 1981, p. 7). So far, at least three forms of a general probability density 

distribution with a priory unknown shapes were proposed  : Chebishev, Gram Charlie and 

Edgeworth. Insofar, the best properties in terms of integralability and convergence are found   in 

Edgeworth distribution approximation. Its form allows any standard probability distribution f (z) 

 

 

f(z) =(z) + -3zzwhere z =(x-1)/√2. 

 

In the area of digital signal processing, Giannakis (1990) was the first to show that the third 

and the sample fourth order cummulant functions , C3
r

4 can be 

estimated    from the observed time series {rt}: 

 

C3
r(1,2)=  (∑(r(t)r(t+1)r(t+2))/n,                  2=1,2..L ,1,2...L                      (12) 

 

C4
r(1,2,3) = (∑(r(t)r(t+1)r(t+2) r(t+3))/n   2=1,2..3 ; 2=1,2..L ,1,2...L       (13) 

 

where n is a number of observations and the second-order cumulant C2
r

autocorrelation function of the time series of returns rt, t=1,2.3…n. 

 

2.2.2. The Hinich test 

 

Hinich (1996) developed a test statistics aimed to check serial dependence in the 

innovation data by using auto correlation, bicorrelations and tricorrelations .The null hypothesis 

is that the ARMA model innovations are realizations of a pure white noise process. Therefore, 

under the null hypothesis, all C2(r)] = 0, for all r ≠ 0, the bicorrelations  

C3 - - s)] for all r and s  , except where r =s=0 , and the tricorrelations  C4 

- - -v)] =0 for all r ,s and v , except where r = s = v = 0   

               

The H2 statistics, known as Q statistics, originally developed by   Box-Pierce (10), is used   

to test linear serial dependence. H3 and H4 are designed   to test for the existence of a higher 

order serial dependence (Wild, Foster and Hinich, 2010, pg 9): 
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H3=(n-s) ∑ ∑ {𝑠−1
𝑟=1

𝐿
𝑠=2 C3 (r,s)}2 ≈χ2 with L(L-1)/2  d.f. , where L is number of lags.                 (14)         

 

H4 =(n-v)3/2 ∑ ∑ {𝑣−1
𝑠=2 ∑ {𝑠−1

𝑟=1
𝐿
𝑣=2 C3(r,s,v)}3 ≈χ2 with L(L-1)(L-2)/3.f.                                         (15) 

 

The number of lags L is defied as L=nb , with 0<b<.5 , for the H2 and H3and <0<b<.33 

for the test based on the forth order cumulants. According to Wild , Foster and Hinich (2010)  , 

“if the null hypothesis of pure noise is rejected by the H2, H3 or H4 tests , this then signifies the 

presence of structure in the data that cannot be modeled by ARCH or GARCH or stochastic 

volatility models that assume a pure noise input. 

 

Empirical Analysis 

GARCH-ARMA results 

The ARMA-GARCH empirical analysis is based on daily quotations of closing daily exchange 

rates for the period from Sep 21, 2012 to March 20, 2013, taken from Bloomberg. The common 

sample of exchange rate description is presented in Table 1. 

The reported statistics confirm the skewed distributions across all currencies. In addition, 

the sample kurtosis for each currency is well above the normal value of 3. Jarque-Bera values 

show that all FX return distributions are leptokurtic and depart significantly from the Gaussian 

distribution. 

The ARMA-GARCH parameter estimates based on OLS method are given in Table 2. The 

table presents only the best stationary model for each currency and is chosen when achieving the 

minimum Akaike Information Criterion (AIC). 

The Box &Pierce (1980) test of the null hypothesis that the first K autocorrelations of 

covariance stationary innovations are zero, in the presence of statistical dependence, was 

performed  . The results are in Table 2. The presented results show the best ARMA model for 

each currency in terms of AIC criterion. All selected models are stationary. Stationarity is 

achieved by   taking the first or the second difference of FX returns. ARCH-ARMA parameter 

estimates show unexpectedly high coefficient of determination. Q statistics shows that residuals 

are non-correlated. Estimated GARCH volatilities calculated by using (5) are presented in fig 1. 

The statistical properties of GARCH innovations are given in Table 3. As it can be seen 

from the table, kurtosis is extremely high for all currencies, which suggests a strong departure 

from the model assumption, which stated that GARCH residuals were supposed to be normally 

distributed. 

 

 

RV-ARMA Empirical Results  

High frequency squared returns were used to create daily realized volatility for all currencies  ( 

8). RV data are presented in Figure 2.Their statistical properties are given   in Table 4.The 

kurtosis of the returns is much higher than that of a normal distribution at intraday frequency and 

tends to decrease as the return length increases. Thus return probability density functions (pdfs) 

are leptokurtic with a fat tails. Those stylized facts are not seen only in autocorrelation function, 

kurtosis and skewness of squared returns, but also in the third and the fourth order cumulant 

functions. Table 4 clearly shows departure from the Gaussian distribution. These realised 

volatilities are then used to make an RV-ARMA (p,q) model. The model parameters based on E-

views software are presented in Table 5. 
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As it can be seen from Table 5, Box-Pierce test statistics Q, applied to model residuals, 

shows that for two currencies hypothesis of non correlated innovations cannot be rejected  . This 

finding suggests a question of the validity of the assumption that RV residuals are produced by   

a non correlated noise. 

 

Comparative Analysis 
Proceeding with the data description, statistical properties of the GARCH-ARMA residuals and 

RV-ARMA innovations are presented   in Table 6.1 and Table 6.2 respectively. From statistical 

description, it is obvious that neither of the volatility models has captured high kurtosis of 

squared daily returns or realized daily volatility in the case of seven currencies being tested. This 

contradicts the finding by (Andersen, Bollerslev, Diebold and Labys, 2000) that residuals are 

nearly Gaussian.            

The forth order cumulants of squared returns and corresponding ARMA GARCH 

innovations are calculated by   using (10) and (11) and marked by   “RESR2GDPEUR” for 

example . The fourth order cumulants of corresponding realized volatility, ARMA-RV 

innovations, are also calculated for each currency by using (9). The cumulants for seven 

currencies are presented and are presented in Figures 3.1, 3.2 and 3.4.These figures demonstrate 

that residual cumulants are different from zero, i.e., that both ARMA-GARCH and ARMA-RV 

volatility models produce non Gaussian innovations without being able to capture the stylized 

facts from FX returns.  

Ultimately, to substantiate analysis, the null hypothesis that innovation- driving noise is iid 

process is tested using Hinch test. The results are presented in Table 7.The results show that in 

the case of four RV-ARMA models, the null hypothesis which states that innovations are 

“white”, cannot be rejected  . But in five cases of GARCH-ARMA innovations, Hinich test 

values were higher than χ2 critical, confirming that white innovations are not produced  . 

 

Conclusion 

This paper aimed to compare ARMA-GARCH and ARMA-RV non Gaussian volatility models 

in terms of the statistical properties of their innovations on which both models are footing. 

Therefore, its objective was to test if the model innovations are white in terms of higher order 

cumulants, as in the case when the model completely extracts information necessary to forecast 

volatility. 

Empirical analysis is based on seven foreign exchange rates (FX), including Jpy/Eur, 

Usd/Eur, Cad/Usd, Chf/Eur, Chf/Usd, Usd/Gbp and Gbp/Eur, taken from Bloomberg. The 

residual testing was performed   by using Hinich triple correlation test, which is based on the 

third and on the fourth order cumulant functions. The concept of cumulants is also introduced  . 

The results demonstrated that neither ARMA-GARCH nor RV-GARH, if estimated by using the 

second order statistics, produce “white” innovations. 

It was confirmed    that, if there are both third- and fourth-order nonlinear serial dependence 

in the data, time series models that make use of a linear structure or presume a pure white noise 

input (such as the geometric Brownian motion (GBM) stochastic diffusion model) are 

problematic. In particular, the dependence structure violates both the normality and Markovian 

assumptions underpinning conventional GBM models. 

This paper’s finding of serial dependence in GARCH and RV innovations has important 

implications for the use of GBM and jump diffusion models that currently emphasize accepted 
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risk management strategies based on the Black–Scholes option pricing model, which are 

employed   in financial and investment management.  

Therefore, the question of non Gaussian parameter estimation in volatility forecasting 

remains an everlasting problem which definitely needs to be addressed in terms of a HOC 

parameter estimation methodology. 
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Appendix A1 

 

Table 1. Descriptive statistics of the squared FX daily returns  

 

 
 

 

  

  R2JPYEUR R2USDEUR R2CADUSD R2CHFEUR R2CHFUSD R2USDGBP 

 Mean 0.15 0.04 0.02 0.01 0.03 0.03 

 Median 0.05 0.02 0.01 0.00 0.01 0.01 

 Maximum 1.36 0.47 0.15 0.28 0.28 0.29 

 Minimum 0.00 0.00 0.00 0.00 0.00 0.00 

 Std. Dev. 0.25 0.06 0.03 0.03 0.05 0.05 

 Skewness 3.12 4.06 2.45 5.25 2.62 2.81 

 Kurtosis 13.50 26.38 8.87 35.47 10.11 12.57 

 Jarque-

Bera 677.65 2782.05 265.30 5288.11 353.76 559.04 
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Table2. ARMA-GARCH parameter estimates. 

 

  
*denotes a first difference ARMA model  

 

Table 3. ARMA-GARCH innovation statistical description 

 

 
 

Table 4. Statistical description of daily realized volatilities 

 

 
 

  

Currency C AR(1) AR(2) AR(3) AR(4) AR(5) MA(1) MA(2) MA(3) MA(4) MA(5) R2 AIC Q

JPYEUR 0.159 0.240 -0.163 0.471 -0.231 0.544 -0.226 0.232 -0.693 0.450 -0.407 0.222 -0.115 36.166

st.error 0.059 0.306 0.259 0.148 0.218 0.243 0.337 0.281 0.123 0.292 0.329

USDEUR* -1.877 -1.844 -0.846 -0.037 0.968 0.025 -0.938 -0.951 0.575 -2.781 25.418

0.094 0.180 0.180 0.093 0.023 0.018 0.021 0.024

CADUSD 0.010 0.498 -0.879 0.880 -0.449 0.924 -0.476 0.965 -0.952 0.470 -0.970 0.124 -3.327 31.493

0.022 0.027 0.031 0.023 0.028 0.028 0.022 0.017 0.014 0.021 0.016

CHFEUR 0.281 0.370 -0.317 -0.110 0.699 -0.125 -0.416 0.603 0.174 -0.795 0.222 -4.803 26.896

0.077 0.092 0.080 0.078 0.065 0.075 0.081 0.045 0.070 0.067

CHFUSD* -1.130 -0.875 -1.051 -0.974 -0.124 0.161 -0.288 0.176 -0.037 -0.871 0.528 -2.397 32.374

0.101 0.130 0.114 0.087 0.067 0.078 0.075 0.094 0.072 0.072

USDGBP* 0.831 -0.938 0.193 0.043 -1.959 2.017 -1.406 0.407 0.572 -3.271 25.653

0.161 0.138 0.143 0.083 0.171 0.265 0.261 0.143

RESR2JPYEURRESR2USDEURRESR2CADUSDRESR2CHFEURRESR2CHFUSDRESR2USDGBPRESR2GBPEUR

 Mean 0.0057 0.0023 -0.0027 0.0030 -0.0032 0.0051 0.0093

 Median -0.0534 -0.0080 -0.0122 -0.0005 -0.0180 -0.0071 -0.0050

 Maximum 0.9920 0.3978 0.1251 0.2714 0.2550 0.2368 0.4167

 Minimum -0.4392 -0.0892 -0.0363 -0.0418 -0.0730 -0.0760 -0.2269

 Std. Dev. 0.2149 0.0557 0.0311 0.0313 0.0547 0.0448 0.0785

 Skewness 2.0918 3.8307 2.0813 6.1100 2.6506 2.2811 2.1602

 Kurtosis 9.8540 25.6201 7.6652 51.4944 11.0768 10.4969 12.2986

 Jarque-Bera 292.8428 2590.4050 177.5413 11358.8500 423.9068 349.7843 477.4624

RVJPYEUR RVUSDEUR RVCADUSD RVCHFEUR RVCHFUSD RVUSDGBP RVGBPEUR

 Mean 0.46 0.10 1.10 0.85 0.17 0.24 0.15

 Median 0.28 0.06 1.05 0.84 0.11 0.14 0.09

 Maximum 3.37 0.75 2.19 1.07 0.98 1.64 1.07

 Minimum 0.06 0.01 0.02 0.12 0.01 0.02 0.01

 Std. Dev. 0.47 0.11 0.19 0.08 0.19 0.28 0.16

 Skewness 2.90 3.06 0.78 -6.14 2.26 2.44 2.86

 Kurtosis 15.35 15.09 21.32 62.19 8.40 10.36 13.70

 Jarque-Bera 907.8 896.1 1648.0 17815.6 241.5 380.2 717.2
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Table 5: RV-ARMA parameters  

 

 
*denotes an ARIMA model  

** denotes a second difference model--i.e. d(rvjapeur,2) 

 

Table 6.1. ARMA-GARCH innovation statistical description 

 

 
 

Table 6.2 RV-ARMA innovations description 

 

 
 

  

C AR(1) AR(2) AR(3 AR(4) AR(5) AR(6) AR(7) MA(1) MA(2) MA(3) MA(4) MA(5) R^2 AIC: Q:

JPYUR** -1.53 -1.75 -1.70 -1.39 -1.00 -0.60 -0.25 0.74 1.90 24.03

0.09 0.16 0.21 0.23 0.21 0.16 0.09

USDEUR 0.10 0.40 0.26 -0.41 -0.34 -0.59 -0.24 0.62 0.51 0.29 -1.88 20.01

0.01 1.06 1.11 0.36 0.46 1.04 1.31 0.53 0.62

CADUSD 0.88 -0.05 0.67 0.43 -0.30 0.23 0.45 -0.59 -0.77 0.03 -0.10 0.35 -0.41 217.36

0.16 0.64 0.33 0.47 0.54 0.16 0.64 0.58 0.33 0.71 0.24

CHFEUR 0.85 -0.35 0.91 -0.06 -0.88 -0.12 0.44 -0.91 0.00 1.03 0.22 0.08 -2.56 23.01

0.01 0.25 0.05 0.25 0.09 0.22 0.26 0.04 0.26 0.08 0.25

CHFUSD* -0.75 -0.98 -0.69 -0.95 -0.09 -0.29 0.27 -0.23 0.34 -0.95 0.60 -2.37 108.99

0.07 0.05 0.07 0.05 0.07 0.02 0.02 0.02 0.02 0.02

USDGBP* -0.23 -1.36 -0.26 -0.91 -0.12 -0.86 1.30 -1.22 0.91 -0.92 0.62 -3.24 25.41

0.07 0.02 0.10 0.02 0.07 0.03 0.01 0.04 0.02 0.03

GBPEUR -0.28 -0.29 -0.50 -0.63 0.16 -0.49 -0.10 0.22 0.28 -0.87 0.46 -0.81

0.21 0.18 0.16 0.19 0.12 0.19 0.25 0.23 0.22 0.17

RESR2JPYEURRESR2USDEURRESR2CADUSDRESR2CHFEURRESR2CHFUSDRESR2USDGBPRESR2GBPEUR

 Mean 0.01 0.00 0.00 0.00 0.00 0.01 0.01

 Median -0.05 -0.01 -0.01 0.00 -0.02 -0.01 0.00

 Maximum 0.99 0.40 0.13 0.27 0.26 0.24 0.42

 Minimum -0.44 -0.09 -0.04 -0.04 -0.07 -0.08 -0.23

 Std. Dev. 0.21 0.06 0.03 0.03 0.05 0.04 0.08

 Skewness 2.09 3.83 2.08 6.11 2.65 2.28 2.16

 Kurtosis 9.85 25.62 7.67 51.49 11.08 10.50 12.30

 Jarque-Bera 292.84 2590.41 177.54 11358.85 423.91 349.78 477.46

RESRVJPYEUR RESRVUSDEUR RESRVCADUSD RESRVCHFEUR RESRVCHFUSD RESRVUSDGBPRESRVGBPEUR

 Mean 0.00 0.01 -0.01 -0.02 -0.02 0.07 0.01

 Median -0.03 0.00 0.00 -0.05 -0.06 -0.07 -0.03

 Maximum 0.66 0.76 0.21 0.45 1.14 3.15 0.79

 Minimum -0.11 -1.01 -0.71 -0.33 -0.47 -0.64 -0.27

 Std. Dev. 0.11 0.16 0.08 0.14 0.24 0.52 0.15

 Skewness 3.26 -1.14 -6.05 1.21 1.63 2.48 2.05

 Kurtosis 17.75 23.03 58.53 5.03 8.37 13.61 9.74

 Jarque-Bera 1180.31 1845.56 14669.51 45.08 179.59 622.56 282.62

Volume 9, Number 2, Fall 2014 143

Oxford Journal: An International Journal of Business & Economics



Table 7. Hinich triple correlation test results for ARMA-RV and ARMA-GARCH 

innovations 

 

 
 

Appendix A2 

 

Figure 1. ARMA-GARCH estimated daily variances 

 

 
 

  

Innovations 

HOC-TEST ARMA-GARCH ARMA-RV

L=10 , Hcrit=73.11

HINICHRESJPYEUR 121.407 41.319

HINICHRESCHFUSD 84.603 109.996

HINICHRESCHFEUR 132.371 337.439

HINICHRESCADUSD 93.203 11.302

HINICHRESUSDGBP 156.300 493.819

HINICHRESGBPEUR 63.901 42.374

HINICHRESUSDEUR 133.683 6.575
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Figure 2. Daily realized volatility – all currencies 

 

 
 

Figure 3.1 Fourth Order Cumulants:  JPYEUR and CHFUSD GARCH and RV 

Innovations 
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Figure 3.2 Fourth Order Cumulants: CHFEUR and CADUSD GARCH and RV 

Innovations 

 

  
 

Figure 3.3 Fourth Order Cumulants –USDEUR and USDGBP GARCH and RV 

Innovations 
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Figure 3.4 Fourth Order Cumulants – GBPEUR and GBPEUR GARCH and RV 

Innovations 
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